viernes, 20 de febrero de 2009

Las Centrales Nucleares

Su funcionamiento:

Muchos de los procesos de producción de energía eléctrica se basan en el movimiento de generadores eléctricos por la acción del vapor de agua a presión. Tanto a través de la fisión como de la fusión, así como en las centrales térmicas -entre otras instalaciones-, se aprovecha el calor generado para mover un generador de corriente eléctrica.
En el caso concreto de las centrales nucleares el calor lo produce la fisión del Uranio.

Comparativamente, un día de producción de esta central equivale al consumo de 34.000 barriles de petróleo en una central de fuel de la misma potencia y 6.850 toneladas diarias de carbón en una térmica convencional.

LA GENERACIÓN DE VAPOR
EL CIRCUITO PRIMARIO
El circuito primario es estanco y está formado por la vasija que contiene el núcleo, el presionador y tres lazos. Cada uno de éstos incorpora un generador de vapor y una bomba principal.
El agua desmineralizada que circula por su interior toma el calor producido en el reactor por la fisión nuclear y lo transporta hasta el generador de vapor. En él, un segundo flujo de agua, independiente del primero, absorbe el calor a través de su contacto exterior con las tuberías por las que circula el agua desmineralizada del circuito primario. Por fin, dicho fluido retorna a la vasija del reactor tras ser impulsado por las bombas principales.
El reactor y su circuito de refrigeración están contenidos dentro de un recinto hermético y estanco, llamado "Contención", consistente en una estructura esférica de acero de 53 metros de diámetro, construida mediante chapas de acero soldadas de 40 mm de espesor medio y que se soporta en una estructura de hormigón en forma de cáliz que se apoya sobre la losa de cimentación de 3,5 m. de espesor. La Contención está ubicado en el interior de un segundo edificio, también de hormigón y cuyas paredes exteriores tienen un espesor de 60 cm, llamado edificio del Anillo del Reactor. Este tiene forma cilíndrica y está rematado por una cúpula semiesférica, que sirve de blindaje biológico. Alberga parte de los sistemas de salvaguardia.
El funcionamiento del circuito primario se complementa con la presencia de una serie de sistemas auxiliares que aseguran el control de volumen, la purificación y desgasificación del refrigerante, el control químico, el tratamiento de residuos líquidos, gaseosos y sólidos, así como otras diferentes funciones necesarias para su correcta operación.
LA PRODUCCIÓN DE ELECTRICIDAD
EL CIRCUITO SECUNDARIO

El diseño y el funcionamiento de los equipos de este sistema son similares a los existentes en las demás centrales de tipo térmico convencional. En el circuito secundario, el vapor producido en los generadores se conduce al foco frío o condensador, a través de la turbina que transforma la energía térmica (calor) en energía mecánica. La rotación de la turbina acciona directamente el alternador de la central y produce energía eléctrica. El vapor de agua que sale de la turbina pasa a estado líquido en el condensador, retornando, mediante el concurso de las bombas de condensado y de agua de alimentación, al generador de vapor para reiniciar el ciclo. En esta fase se incorporan varios procesos de precalentamiento para optimizar el rendimiento termodinámico. Asimismo, se dispone de un depósito de agua de alimentación para mejorar la disponibilidad del sistema.

Existe, además, una conducción directa (by-pass) que conduce el agua desde la entrada a la turbina de alta presión y hasta el condensador. Permite, cuando se desconecta el turbogrupo de la red eléctrica exterior, conducir el vapor para su condensación, en tanto se reduce la producción de calor en el reactor.
Unidos a la turbina por un mismo eje se encuentran el alternador y la excitatriz. La tensión de generación es de 27 kilovatios y se eleva a 400 kv., siendo la potencia activa de 1.066 megavatios y la frecuencia 50 hertzios.
El condensador de doble cuerpo incorpora 68.000 tubos de titanio de 22 milímetros de diámetro y 0,7 milímetros de espesor, por cuyo interior circula el agua exterior de un tercer circuito, denominado sistema de agua de circulación.
La central dispone de dos parques de transformación, uno de 400 kilovoltios, para distribución de la energía generada por la central, y otro de 132 kilovoltios, para su alimentación auxiliar.

Esquema de funcionamiento con el nombre de las partes:













Esquema de su funcionamiento:












Impacto ambiental:

Las características de la reacción nuclear hacen que pueda resultar peligrosa si se pierde su control y prolifera por encima de una determinada temperatura a la que funden los materiales empleados en el reactor, así como si se producen escapes de radiación nociva por esa u otra causa.
La energía nuclear se caracteriza por producir, además de una gran cantidad de energía eléctrica, residuos nucleares que hay que albergar en depósitos aislados y controlados durante largo tiempo. A cambio, no produce contaminación atmosférica de gases derivados de la combustión que producen el efecto invernadero, ni precisan el empleo de combustibles fósiles para su operación. Sin embargo, las emisiones contaminantes indirectas derivadas de su propia construcción, de la fabricación del combustible y de la gestión posterior de los residuos radiactivos (se denomina gestión a todos los procesos de tratamiento de los residuos, incluido su almacenamiento) no son despreciables.

El uso de la fisión nuclear como combustible para la generación térmica de electricidad produce una gran cantidad de desechos radioactivos (una central de 1000 MW genera anualmente unas 25 toneladas de material irradiado, entre ellas 200 kg. de plutonio), cuya radioactividad decaerá considerablemente sólo después de varios siglos si no milenios, con la gravísima hipoteca que esto supone para las generaciones venideras. Cuarenta años después del nacimiento de este fuente de energía, el problema sigue irresuelto.
III. Riesgos
La peligrosidad de la industria nuclear, y la estrecha unión que siempre ha tenido con los usos militares (con unos kilogramos de plutonio es relativamente fácil fabricar una bomba de 20 a 30 megatones), la convierten en una actividad de altísimo riesgo, incluso en el utópico supuesto de un funcionamiento tecnológicamente perfecto. Todo el entorno en el que se ubican se ve directamente afectado por las consecuencias que podrían derivarse tanto de un desastre natural (seísmos, por ejemplo) como de un acto deliberado de sabotaje o destrucción de carácter bélico o golpista.
IV. Proliferación de armamento nuclear
La actividad de la industria nuclear ha alimentado y facilitado la proliferación horizontal (entre países) y vertical (dentro de cada país) de armas nucleares, suministrando uranio o plutonio fisionables recuperados en las plantas de reprocesamiento a los ejércitos de diversos estados. Un ejemplo: en la planta de reprocesamiento de Marcoule (Francia), y en virtud de un antiguo acuerdo Franco-De Gaulle, se ha venido reprocesando rutinariamente el combustible nuclear gastado de la central Vandellos I. Parte de lo obtenido ha sido desviado al programa de armamento nuclear francés.
V. Accidentes
A los riesgos inherentes al funcionamiento normal de la industria nuclear se añaden los que se derivan de cualquier error, fallo o imprevisto de carácter mecánico o humano. Los promotores de la industria nuclear pretendieron hace años que ésta podría reducir tales avatares hasta valores despreciables. Treinta años de historia han demostrado cuan absurda era aquella presunción. Los costes económicos de la catástrofe de Chernobil son todavía incalculables, aunque algunas fuentes oficiales han hablado de cifras -50 BILLONES de pesetas- superiores a las del PIB del estado español. Causó la muerte inmediata de 31 personas, medio millón de madres y niños tuvieron que ser evacuados, la contaminación obligó a abandonar dos ciudades industriales, deberá restringirse el acceso a una zona de 30 km. alrededor de la central durante un tiempo indefinido, más de 100.000 personas han tenido que emigrar definitivamente, una cuarta parte de la superficie cultivada de Bielorrusia quedará improductiva durante más de medio siglo, un millón de personas han quedado afectadas por radiaciones de alto nivel, el número probable de cánceres inducidos se calcula según algunos científicos en MEDIO MILLÓN...

Tecnologías para disminuir el impacto ambiental:

En operación normal, los productos radiactivos están confinados dentro de la pastilla de uranio. Para evitar su escape, se fabrica el combustible con la máxima calidad y se diseña la central de forma tal que el combustible no sufra daño durante la fabricación. Márgenes de seguridad adecuadas en el diseño del núcleo, y un sistema de protección automático, impiden las maniobras erróneas que puedan dañar al combustible.
Sin embargo, a pesar de las precauciones anteriores, se presupone la hipótesis de que haya fugas en el combustible, que pudieran contaminar el agua de refrigeración que circula por la vasija; también se postula la hipótesis de fugas en la vasija y sus tuberías asociadas. Por esta razón, se instala un sistema para el tratamiento de las fugas de los equipos de la central, y se impide que estos efluentes traspasen de forma incontrolada la contención.
Para asegurar que el público no sufra ningún daño los operadores de las centrales están obligados a medir la radiactividad del ambiente, y comprobar, mediante controles en el agua, aire, suelo y alimentos, que las personas que viven en los alrededores, puedan respirar, beber y comer los alimentos de la zona sin peligro alguno. Estos controles también son realizados en forma independiente por el Ente Regulador.

Centrales instaladas en España o en el mundo:

Santa María de Garoña. Situada en Garoña (Burgos). Inaugurada en 1970. Tipo BWR. Potencia 466 MWe
Almaraz I. Situada en Almaraz (Cáceres). Inaugurada en 1980. Tipo PWR. Potencia 980 MWe
Almaraz II. Situada en Almaraz (Cáceres). Inaugurada en 1983. Tipo PWR. Potencia 984 MWe
Ascó I. Situada en Ascó (Tarragona). Inaugurada en 1982. Tipo PWR. Potencia 1.032,5 MWe
Ascó II. Situada en Ascó (Tarragona). Inaugurada en 1985. Tipo PWR. Potencia 1.027,2 MWe
Cofrentes. Situada en Cofrentes (Valencia). Inaugurada en 1984. Tipo BWR. Potencia 1.097 MWe
Vandellós II. Situada en Vandellós (Tarragona). Inaugurada en 1987. Tipo PWR. Potencia 1.087,1 MWe
Trillo. Situada en Trillo (Guadalajara). Inaugurada en 1987. Tipo PWR. Potencia 1.066 MWe


















Centrales nucleares en Argentina:

Atucha I. Situada en Lima, Provincia de Buenos Aires. Tipo PHWR. Potencia 1.179 MWt. Inaugurada en 1974. Fue la primera central nuclear de Latinoamérica.
Atucha II. Situada en Lima, Provincia de Buenos Aires. Tipo PHWR. Potencia 2.175 MWt. En construcción.
Embalse. Situada en Embalse, Provincia de Córdoba. Tipo PHWR. Potencia 2.109 MWt. Inaugurada en 1984.

Centrales nucleares en México:

Laguna Verde en Punta Limón, Veracruz, México. Inaugurada en 1989. Potencia: 1365 MWe.

Imagenes y vídeos relacionados:






No hay comentarios:

Publicar un comentario

Nota: solo los miembros de este blog pueden publicar comentarios.